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ABSTRACT

Diffusion MRI is a non-invasive imaging technique that al-

lows the measurement of water molecular diffusion through

tissue in vivo. In this paper, we present a novel statistical

model which describes the diffusion-attenuated MR signal

by the Laplace transform of a probability distribution over

symmetric positive definite matrices. Using this new model,

we analytically derive a Rigaut-type asymptotic fractal law

for the MR signal decay which has been phenomenologically

used before. We also develop an efficient scheme for recon-

structing the multiple fiber bundles from the DW-MRI mea-

surements. Experimental results on both synthetic and real

data sets are presented to show the robustness and accuracy

of the proposed algorithms.

Index Terms— Biomedical imaging, Magnetic resonance

imaging, Biomedical image processing, Diffusion processes

1. INTRODUCTION

Diffusion-weighted imaging (DWI) is a magnetic resonance

(MR) imaging technique exploiting the sensitivity of the MR

signal to the Brownian motion of water molecules. It adds

to the conventional relaxation-weighted magnetic resonance

imaging (MRI) the capability of measuring the water diffu-

sion characteristics in local tissue. The directional depen-

dence of water diffusion in fibrous tissues, like muscle and

white-matter in the brain, provides an indirect but powerful

means to probe the microstructure of these tissues. As of

today, DWI is the unique noninvasive technique capable of

quantifying the anisotropic diffusion of water molecules in

tissues allowing one to draw inferences about neuronal con-

nections between different regions of the central nervous sys-

tem (CNS).

In diffusion MRI, most applications rely on the fundamen-

tal relationship between the MR signal measurement S(q)
and the average particle displacement probability density func-

tion (PDF)P (r)which is given by the following Fourier trans-

form [1]: S(q) = S0

∫
R3 P (r) eiq·rdr where S0 is the signal

in the absence of diffusion gradient, r is the displacement vec-

tor and q = γδGg, where γ is the gyromagnetic ratio, δ is the

diffusion gradient duration, G and g are the magnitude and

direction of the diffusion sensitizing gradients respectively.

Diffusion tensor MRI (DT-MRI or DTI), introduced by

[2], provides a relatively simple way of quantifying diffu-

sional anisotropy as well as predicting the local fiber direction

within the tissue from multidirectional diffusion MRI data.

DTI assumes a displacement probability characterized by an

oriented Gaussian probability distribution function, which leads

to a signal decay given by S(q) = S0 exp
(−bgT Dg

)
where

b = |q|2t is the diffusion weighting factor depending on

the strength |q| as well as the effective diffusion time and

D is called the apparent diffusion tensor. DTI model has

been shown to be quite successful in regions of the brain and

spinal cord with significant white-matter coherence and has

enabled the mapping of anatomical connections in the cen-

tral nervous system. However, the major drawback of dif-

fusion tensor MRI is that it can only reveal a single fiber

orientation in each voxel and fails in voxels with orienta-

tional heterogeneity (IVOH) [3]. This limitation of DT-MRI

has prompted interest in the development of both improved

imaging measurement strategies and more sophisticated re-

construction methods. Recently, [4] proposed the so called q-

ball imaging (QBI) method, in which radial integral of the dis-

placement PDF is approximated by the spherical Funk-Radon

transform. [5, 6] further reformulates QBI’s Funk-Radon

transform in a spherical harmonic basis. More recently, [7]

introduced the diffusion orientation transform (DOT) which

transforms the diffusivity function into probability function

by expressing the Fourier relation in spherical coordinates and

evaluating the radial part of the integral analytically. Multi-

compartmental models [3] have also been used to model the

diffusion-attenuated MR signal. Two problems accompany
the use of these models. First, the number of such compart-

ments has to be pre-specified, presenting a model-selection

problem. Second, the nonlinear fitting procedure is unstable

and heavily depends on the choice of the starting point be-

cause of the local minima in the objective function.
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In this paper, we present a novel statistical model which
assumes that at each voxel there is an underlying probability
measure associated with Pn (the manifold of n × n positive
definite matrices). We make the interesting observation that
the resulting continuous mixture model and MR signal atten-
uation are related via a Laplace transform defined on Pn.
We also show that the Laplace transform can be evaluated
in closed form for the case when the mixing distribution is a
matrix-variate gamma distribution. The resulting closed form
is a Rigaut-type function which has been phenomenologically
used before to explain the MR signal decay but never with a
rigorous mathematical justification until now.

2. THEORY

We assume that at each voxel there is an underlying probabil-

ity measure associated with the manifold of n× n symmetric

positive-definite matrices, Pn. Let f(D) be its density func-

tion with respect to some carrier measure dD on Pn. Then we

can model the diffusion signal by:

S(q)/S0 =
∫
Pn

f(D) exp[−bgT Dg] dD . (1)

Note that above equation implies a more general form of mix-

ture model with f(D) being a mixing density over the covari-

ance matrices of Gaussian distributions. Clearly, our model

simplifies to the diffusion tensor model when the underlying

probability measure is the Dirac measure.

Since bgT Dg in Eq.(1) can be replaced by trace(BD)
where B = bggT , the diffusion signal model presented in the

form of (1) can be exactly expressed as the Laplace transform

(matrix variable case) [8]:

S(q)/S0 =
∫
Pn

exp(−trace(BD)) f(D)dD = (Lf )(B) ,

(2)

where Lf denotes the Laplace transform of a function f which

takes argument in Pn.

Definition 1 [8] For σ ∈ Pn and for p in
(

n−1
2 ,∞)

, the
matrix-variate gamma distribution γp,σ with scale parameter
σ and shape parameter p is defined as 1

dγp,σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |σ|−p e−trace(σ−1Y) dY,

where Γn is the multivariate gamma function and | · | denotes
the determinant of a matrix.

It can be shown [8] that the Laplace transform of γp,σ is

∫
e−trace(θu) γp,σ(du) = |In+θσ|−p = (1+trace(θσ))−p.

1Note that the correspondence between this definition and the Wishart

distribution Wn(p, Σ) is given simply by γp/2,2Σ = Wn(p, Σ).

Let f in (2) be the density of matrix-variate gamma dis-

tribution γp,σ with a fixed expected value D̂ = pσ. We have

S(q) = S0 (1 + (bgT D̂g)/p)−p . (3)

This is a familiar Rigaut-type asymptotic fractal expression

[9] which implies a signal decay characterized by a power-

law in the large-|q|, hence large-b asymptotic. This is the

expected asymptotic behavior for the MR signal attenuation

in porous media [10]. Note that although this form of a sig-

nal attenuation curve had been phenomenologically fitted to

the diffusion-weighted MR data before [11], until now, there

was no rigorous derivation of the Rigaut-type expression used

to explain the MR signal behavior as a function of b-value.

Therefore, this derivation may be useful in understanding the

apparent fractal-like behavior of the neural tissue in diffusion-

weighted MR experiments. Also note when p tends to infin-

ity, we have S(q) → S0 exp(−bgT D̂g) , which implies that

the mono-exponential model can be viewed as a limiting case

(p→∞) of our model.

3. METHOD

The Laplace transform relation between MR signal and the

probability distributions on Pn naturally leads to an inverse

problem: to recover a distribution on Pn that best explains

the observed diffusion signal. This is an ill-posed problem

and in general is not solvable without further assumptions.

We first propose a discrete mixture of matrix-variate gamma

distribution model where the mixing distribution in Eq.(2) is

expressed as dF =
∑N

i=1 widγpi,σi
. In this model (pi, σi)

are treated as basis and will be fixed as described below. It

leaves the weights w as the unknowns to be estimated. Note

here the number of components in mixture, N , only depends

on the resolution of the manifold discretization and should not

be interpreted as the expected number of fiber bundles. Then

we assume that all the pi take the same value p = 2 based

on the analogy between the Eq.(3) and Debye-Porod law of

diffraction [10] in three-dimensional space. Since the fibers

have an approximately cylindrical geometry, it is reasonable

to assume that the two smaller eigenvalues of diffusion ten-

sors are equal. In practice, we fix the eigenvalues of σi to

specified values (λ1, λ2, λ3) = 1
p (1.5, 0.4, 0.4)μ

2/ms con-

sistent with the values commonly observed in white-matter

tracts [3]. This rotational symmetry leads to a tessellation

where N unit vectors evenly distributed on the unit sphere

are chosen as the principal directions of σi. In this way,

the distribution can be estimated using a spherical deconvo-

lution scheme [12]. For K measurements with qj , the sig-

nal model equation: S(q) = S0

∑N
i=1 wi(1+ trace(Bσi))−p

yields a linear system Aw = s, where s = (S(q)/S0) is

the vector of normalized measurements, w = (wi), is the

vector of weights to be estimated and A is the matrix with

Aji = (1 + trace(Bjσi))−p. Since the matrix A only de-
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Fig. 1. Simulations of 1-, 2- and 3-fibers (b = 1500s/mm2). Orienta-

tions: azimuthal angles φ1 = 30, φ2 = {20, 100}, φ3 = {20, 75, 135};

polar angles were all 90◦. Top: Q-ball ODF surfaces; Bottom: Probability

surfaces computed using proposed method.

pends on the sampling scheme and therefore needs only one-

time computation, the computational burden of this method is

light and comparable to that of diffusion-tensor MRI. How-

ever, the induced inverse problem can be ill-conditioned due

to the possible singular configurations of the linear system. In

practice, the damped least squares method as a regularization

scheme is employed to overcome the instability problem.

After the continuous distribution of tensors model is ob-

tained, the displacement PDF can be approximated by the

Fourier transform P (r) =
∫
E(q) exp(−iq · r) dq where

E(q) = S(q)/S0 is the MR signal attenuation. Assuming a

continuous diffusion tensor model as in Eq.(1) with mixing

distribution F (D) =
∑N

i=1 widγpi,σi
, we have

P (r) =
∫

R3

∫
Pn

exp(−qT Dqt) dF (D) exp(−iq · r) dq

≈
N∑

i=1

wi√
(4πt)3|D̂i|

exp(−rT D̂−1
i r/4t)

(4)

where D̂i = pσi are the expected values of γp,σi
. Once

the P (r) as a real-valued spherical function is computed, the

number of fibers, together with an orientation estimate at each

voxel, can be resolved by finding the peaks of P (r) as in [7].

4. RESULTS

4.1. Simulations

We empirically investigated the performance of our recon-

struction method. Of special interest is its accuracy towards

fiber orientation detection in the presence of noise. To study

this issue, we first took the HARDI simulations of 1-,2- and

3-fiber profiles with known fiber orientations and computed

the probability profiles as shown in Fig.1. 2

In the case of noiseless signal, the proposed method as

well as QBI are both able to recover the fiber orientation

2The simulations employed the exact form of the MR signal attenuation

from particles diffusing inside cylindrical boundaries [13].

From proposed method

ψ(σ = .02) ψ(σ = .04) ψ(σ = .06)
1 fiber 0.65± 0.39 1.19± 0.65 1.66± 0.87

2 fibers
1.18± 0.66 2.55± 1.29 3.85± 2.12
1.30± 0.66 2.76± 1.34 3.63± 1.91

3 fibers

4.87± 3.23 8.59± 5.82 11.79± 6.86
5.81± 3.61 7.70± 5.02 11.27± 6.36
4.92± 3.32 7.94± 4.59 12.57± 7.09

From QBI
ψ(σ = .02) ψ(σ = .04) ψ(σ = .06)

1 fiber 1.28± 0.75 3.34± 1.97 5.94± 3.19

2 fibers
2.39± 1.26 4.82± 2.44 7.95± 4.45
2.30± 1.10 4.94± 2.15 7.49± 3.88

3 fibers

10.80± 5.59 12.15± 4.42 20.21± 11.10
11.59± 5.44 13.07± 4.74 19.54± 11.80
11.66± 5.18 12.25± 4.93 20.36± 11.50

Table 1. Statistics of the deviation angles ψ between the computed

and true fiber orientations in presence of noise.

quite accurately. The Q-ball orientation distribution functions

(ODF) is computed by using the formula given by [5] in

terms of spherical harmonics expansion. Since our method

computes the probability values directly, we fit the result-

ing probability profiles from proposed method using spher-

ical harmonics basis for better surface rendering. The exis-

tence of analytical angular derivatives of spherical harmonic

functions also enables us to apply fast gradient-based numer-

ical optimization routines to find the peaks of the probability

surfaces.

To provide a more quantitative assessment of the proposed

method and its sensitivity to noise, we add Rician-distributed

noise by adding Gaussian noise on both real and imaginary

parts of all 1-, 2- and 3-fiber systems shown in Fig.1, with

increasing noise levels (σ = .02, .04, .06). The simulations

of the signal profiles with noise were repeated 100 times for

each noise level to provide a distribution of deviation angles.

Table 1 reports the mean and standard deviation of these dis-

tributions in degrees.

As expected, the deviation angles between the recovered

and the true fiber orientations increase with increasing noise

levels and it is more challenging to accurately resolve the dis-

tinct orientations when there are more fiber orientations. The

statistics reported in Table 1 also indicate that the proposed

method has stronger resistance to noise than the QBI method.

4.2. Experiments

The rat optic chiasm is an excellent experimental validation

of our approach due to its distinct myelinated structure with

both parallel and descussating optic nerve fibers. A HARDI

data from optic chiasm region of excised, perfusion-fixed rat

nervous tissue was acquired at 14.1T using Bruker Avance

imaging systems. A diffusion-weighted spin echo pulse se-
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quence was used. Diffusion-weighted images were acquired

along 46 directions with a b-value of 1250s/mm2 along with

a single image acquired at b ≈ 0s/mm2.

Figure 2 shows the displacement probabilities computed

from the optic chiasm image. For the sake of clarity, we ex-

cluded every other pixel and overlaid the probability surfaces

on generalized anisotropy (GA) maps [14]. As evident from

this figure, our method is able to demonstrate the distinct fiber

orientations in the central region of the optic chiasm where ip-

ilateral myelinated axons from the two optic nerves cross and

form the contralateral optic tracts.

Fig. 2. Probability maps computed from a rat optic chiasm data set

overlaid on axially oriented GA maps. The decussations of myeli-

nated axons from the two optic nerves at the center of the optic chi-

asm are readily apparent. Decussating fibers carry information from

the temporal visual fields to the geniculate body. Upper left corner

shows the corresponding reference (S0) image.

5. CONCLUSION

In this paper, we present a novel mathematical model which

shows that the diffusion MR signals and probability distribu-

tions for positive definite matrix-valued random variables are

related through Laplace transforms. We further show that in

the case of matrix-variate gamma distributions, a closed form

expression for the Laplace transform exists and can be used to

derive a Rigaut-type asymptotic fractal law for the MR signal

decay behavior which has been observed experimentally in

the past [11]. Moreover in this case, the traditional diffusion

tensor model is the limiting case of the expected signal attenu-

ation. Then using this novel model, we develop new methods

for reconstructing the multiple fiber bundles from the diffu-

sion weighted MRI measurements. Experimental results on

both synthetic and real data sets have shown the robustness

and accuracy of the proposed algorithms.
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